Shape deformation analysis from the optimal control viewpoint
نویسندگان
چکیده
A crucial problem in shape deformation analysis is to determine a deformation of a given shape into another one, which is optimal for a certain cost. It has a number of applications in particular in medical imaging. In this article we provide a new general approach to shape deformation analysis, within the framework of optimal control theory, in which a deformation is represented as the flow of diffeomorphisms generated by time-dependent vector fields. Using reproducing kernel Hilbert spaces of vector fields, the general shape deformation analysis problem is specified as an infinite-dimensional optimal control problem with state and control constraints. In this problem, the states are diffeomorphisms and the controls are vector fields, both of them being subject to some constraints. The functional to be minimized is the sum of a first term defined as geometric norm of the control (kinetic energy of the deformation) and of a data-attachment term providing a geometric distance to the target shape. This point of view has several advantages. First, it allows one to model general constrained shape analysis problems, which opens new issues in this field. Second, using an extension of the Pontryagin maximum principle, one can characterize the optimal solutions of the shape deformation problem in a very general way as the solutions of constrained geodesic equations. Finally, recasting general algorithms of optimal control into shape analysis yields new efficient numerical methods in shape deformation analysis. Overall, the optimal control point of view unifies and generalizes different theoretical and numerical approaches to shape deformation problems, and also allows us to design new approaches. The optimal control problems that result from this construction are infinite dimensional and involve some constraints, and thus are nonstandard. In this article we also provide a rigorous and complete analysis of the infinite-dimensional shape space problem with constraints and of its finite-dimensional approximations.
منابع مشابه
Shape Deformation and Optimal Control
Shape deformation analysis is concerned with determining a deformation of a given shape into another one, which is optimal for a certain cost. We provide the main ideas for a new general approach to shape deformation analysis, using the framework of optimal control theory. This point of view can be made independent from the parametrization of the shape, and allows to model general constrained s...
متن کاملAutomatic bone segmentation and alignment from MR knee images
Automatic image analysis of magnetic resonance (MR) images of the knee is simplified by bringing the knee into a reference position. While the knee is typically put into a reference position during image acquisition, this alignment will generally not be perfect. To correct for imperfections, we propose a two-step process of bone segmentation followed by elastic tissue deformation. The approach ...
متن کاملShape Space from Deformation
The construction of shape spaces is studied from a mathematical and a computational viewpoint. A program is outlined reducing the problem to four tasks: the representation of geometry, the canonical deformation of geometry, the measuring of distance in shape space, and the selection of base shapes. The technical part of this paper focuses on the second task: the specification of a deformation m...
متن کاملImplementation of Control Variables to Exploit Output Power for SRGs in Single Pulse Mode Operation
This paper presents an analytical modeling method of optimal control variables to maximize output power for switched reluctance generators (SRGs) in single pulse mode operation. This method extends the basic theory of the Stiebler model and utilizes the flux linkage function to express the inductance model of SRG. In this paper, the optimal phase current shape of SRG for maximum output power is...
متن کامل2D shape deformation based on rigid square matching
In this paper, we propose a fast and stable method for 2D shape deformation based on rigid square matching. Our method utilizes uniform quadrangular control meshes for 2D shapes and tries to maintain the rigidity of each square in the control mesh during user manipulation. A rigid shape matching method is performed to find an optimal pure rotational transformation for each square in the control...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015